|
Electron scattering occurs when electrons are deviated from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.〔 The application of electron scattering is such that it can be used as a high resolution microscope for hadronic systems, that allows the measurement of the distribution of charges for nucleons and nuclear structure. The scattering of electrons has allowed us to understand that protons and neutrons are made up of the smaller elementary subatomic particles called quarks.〔 Electrons may be scattered through a solid in several ways: *Not at all: no electron scattering occurs at all and the beam passes straight through. *Single scattering: when an electron is scattered just once. *Plural scattering: when electron(s) scatter several times. *Multiple scattering: when electron(s) scatter very many times over. The likelihood of an electron scattering and the proliferance of the scattering is a probability function of the specimen thickness to the mean free path.〔 ==History== The principle of the electron was first theorised in the period of 1838-1851 by a natural philosopher by the name of Richard Laming who speculated the existence of sub-atomic, unit charged particles; he also pictured the atom as being an 'electrosphere' of concentric shells of electrical particles surrounding a material core.〔Further notes can be found in Laming, R. (1845): "Observations on a paper by Prof. Faraday concerning electric conduction and the nature of matter", Phil. Mag. 27, 420-3 and in Farrar. W. F. (1969): “Richard Laming and the coal-gas industry, with his views on the structure of matter”, Annals of Science 25, 243-53〕 It is generally accepted that J. J. Thomson first discovered the electron in 1897, although other notable members in the development in charged particle theory are George Johnstone Stoney (who coined the term "electron"), Emil Wiechert (who was first to publish his independent discovery of the electron), Walter Kaufmann, Pieter Zeeman and Hendrik Lorentz. Compton scattering was first observed at Washington University in 1923 by Arthur Compton who earned the 1927 Nobel Prize in Physics for the discovery; his graduate student Y. H. Woo who further verified the results is also of mention. Compton scattering is usually cited in reference to the interaction involving the electrons of an atom, however nuclear Compton scattering does exist. The first electron diffraction experiment was conducted in 1927 by Clinton Davisson and Lester Germer using what would come to be a prototype for modern LEED system. The experiment was able to demonstrate the wave-like properties of electrons,〔Details can be found in Ritchmeyer, Kennard and Lauritsen's (1955) book on atomic physics〕 thus confirming the de Broglie hypothesis that matter particles have a wave-like nature. However, after this the interest in LEED diminished in favour of High-energy electron diffraction until the early 1960s when an interest in LEED was revived; of notable mention during this period is H. E. Farnsworth who continued to develop LEED techniques.〔 High energy electron-electron colliding beam history begins in 1956 when K. O'Neill of Princeton University became interested in high energy collisions, and introduced the idea of accelerator(s) injecting into storage ring(s). While the idea of beam-beam collisions had been around since approximately the 1920s, it was not until 1953 that a German patent for colliding beam apparatus was obtained by Rolf Widerøe. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「electron scattering」の詳細全文を読む スポンサード リンク
|